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Abstract- The finiteditTerence time-domain (FDTD) 
method and tile transmission line matrix (TLM) method 
allow the formulation of state-eq~iation representations Of 
the discretized electromagnetic field. These representations 
usually involve very large numbers of state variables. Re- 
duaed order modeling (ROM) of the investigated structure 
may yield considerable reduction of the computational 
effort and can be used to generate compact models of 
the electromagnetic system. While complexity reduction 
approaches based on moment matching techniques have 
been intensively studied in the case of FDTD, they have 
not yet been considered for TLM. I” this paper we apply 
Krylov subspace methods to TLM using the basic Arnoldi 
and non-symmetric Lanczos algorithm. It is shown that 
the inherent unitarity property of the TLM operator 
nevertheless implies an essential difference in comparison 
to former implementations for FDTD or circuit analysis. 
Simulation results for a rectangular cavity resonator using 
both TIM with and without ROM and a study of the 
convergence of the eigenvalues are presented here. 

Keywords- ‘Ihnsmission Line Matrix (TLM) Method, Re 
dueed Order Modeling (ROM). 

I. INTRODUCTlON 

The TLM has proven to be a powerful tool for solv- 

ing Maxwell’s equations and has been successfully applied 
to the analysis of various complicated planar and three- 
dimensional structures [l]. Like related space discretizing 
methods the TLM solves a system of linear equations with 
a very high order. Realistic problems often require a total 
discretization effort in the order of one million cells, lead- 
ing to an even larger state space dimension and number 
of eigenvalues. Since higher spatial resolution in addition 
demands a shorter time step to guarantee stability, simula- 
tion effort may easily become expensive, if not prohibitive. 
A reduced order model is a system of significantly lower 
order that approximates the original system and sustains 
the relevant eigenvalues. The Krylov subspace methods for 
extracting the interesting parts of the eigenvalues spectrum 
and generating a reduced order model have been used effec- 
tively in FDTD, FEM and circuit analysis [Z], [3], [4]. The 
TLM differs from conventional finite difference schemes, 
e.g. FDTD in the sense that the former is a discrete time 
evolution scheme. Thus reciprocity and energy conser~ai 
tion of the model do not yield symmetry of the discrete time 
evolution operator. Consequently the symmetric Lanczos 
algorithm cannot be applied and the use of general Amoldi- 
or Lanczos-procedures becomes necessary. 

II. THE TLM-METHOD 

The TLM method has emerged as a powerful method for 
computer modeling of electromagnetic field. The TLM- 
method is based on t,he analogy between the discretized 
electromagnetic field and a mesh of transmission lines. The 
space is discretized hy subdivision into rectangular cells 
and the tangential components of the electromagnetic field 
are sampled at the center of each boundary surface of a 
cell. The time evolution of the electromagnetic field is mod- 
eled by wave pulses propagating between adjacent cells and 
scattered within the cells. The TLM cell is described by 
a la-port in Fig. 1, which represents the symmetrical con- 
densed node (SCN) and provides the respective abstract 
network model. The field state in TLM is represented com- 
prisingly by an enumerable set of real quantities and the 
field evolution is governed by linear mapping rules. For 
these reasons, a Hilbert space representation of the field 
state and the field evolution is possible [l]. The propa- 
gation and the scattering of the wave amplitudes may be 
expressed by operator equations. We introduce the Hilhert 
space H, spanned by the sequence of the grid points with 
spatial indices 1, m and n. The k&vectors 11, m, n)- given 
in Dirac notation - represent an orthonormal base of the 
space H,. The incident wave amplitudes al to a12 and 
the scattered wave amplitudes bl to b12 at a single SCN 
are elements of the real vector space ‘R.‘? Finally we con- 
struct the state space of the wave amplitudes ?t~ from the 
direct product of H, and RI*. The vectors /a) E ?fF and 
lb) E 71~ denoting all incident and scattered wave ampli- 
tudes of the TLM mesh can thus be written in the form 

(1) 

where the vector ~;ai,~,” and the vector kbl,m,n summarize 
the incident and the scattered wave amplitudes at the SCN 
(1, m, 4 

kqm,n = k [a,,a*,aa,. ..a*o,an,anl~,,, > 
kbr,m,n = k [b,,bz, bs,.. .bm,h,b&,,, (2) 
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Fig. 2. R&angular resonator 

The left index Ic denotes the discrete time coordinate with 
unit time interval At. Accordingly the simultaneous scat- 
tering at all TLM mesh nodes is described by the operator 
equation 

llc+1b) = s 14 

The scattering matrix S is given by 

(3) 

[ 

0 so SOT 
s = S,T 0 s, , 1 (4) 

so so T 0 

where 

In order to describe the propagation of the wave amplitudes 
in the TLM mesh, we define the spatial shift operators 
in positive 1 - m- and n- direction X, Y,, Z and their 
Hermitian conjugates Xi, Y’ and Z’ on the space H, by 

Xll,m,n) = 11+1,m,n), 
x+ (l,m,n) = II- l,m,n) , 

YI1,m,n)=Il,m+l,n), 

Y+ II,m,n) = Il,m 1,n) ) 

Z~I,m,n)=~l,m,n+l), 

Z+/l,m,n)=Il,m,n-1). 

Making use of the 12 x 12 -matrix (Az,3)m,n = CL,, S,,, 
and the respective numbering of the ports (see Fig. I), the 
connection operator r may be written in the matrix form 

r = X(AI,Z + 4~) + X+(Az,l + 64,s) + 

+Y(h,e + 4,d + Y+(&,s + 47) + 
+Z(As,m + Ad + Z+(&o,s + AIZJI) (6) 

The complete cycle of the TLM-algorithm can be expressed 
as 

I*+14 = rs IA+) (7) 

In z-domain the state equation of the TLM-system is thus 
given as 

(d ~ rs) Ii) = 0. (8) 

It can easily be verified that the scattering matrix S as 
well as the connection matrix r is real, symmetric and 
unitary. While only the case for infinite homogenous space 
is shown here, these properties are also valid for arbitrary 
bounded and lossless structures. The unitarity of S and r 
passes over to the general TLM-operator A = l’s whereas 
symmetry is lost because the scattering and connection op 
erator do not commute : rS # (rS)-‘. The eigenvalues 
of r.9 are located on the unit circle in the complex plain 
and related to the corresponding eigenfrequencies f. by 

,j, = $ Zvf.At (9) 

III. REDUCED ORDER MODELING 

In the complexity reduction approach we search for a 
model of reduced order that approximates the discrete 
TLM model which is represented by the state equation (8) 
derived in the -last section. Assuming a multiport exci- 
tation vector la), and a vector of port responses la), we 
obtain 

” > (11) 

and the multiport matrix impulse response can thus be 
calculated at ILS 

~,=Q(~~~A)~‘R=~:-“Q(A)~-‘R. (12) 
k=l 

Although the order N of the above equation is very high, 
a large number of eigenstates result from the discretization 
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are neither controllable nor observable for the given local- 
ization of excitation and response. Therefore it is mean- 
ingful to generate a reduced order model containing only 
those eigenstates that will significantly affect the accuracy 
of the solution. This may be done using moment matching 
techniques [5]. The basic idea is to project the system of 
state equations of dimension N onto a space of significantly 
lower dimension n such that only the first n moments in the 
Laurent series expansions of the original system (12) and 
the reduced system are matched. Using a projection oper- 
ator W, : I? + RN and its transpose WT : RN + R” 
we obtain the reduced system of order n << N 

I?,,, = QW(zI- A,)-‘WTR = 

= Fz-Qw (A,)“-’ wTR (13) 
le=l 

where W, is such that WZW, = 1,. 
From the Laurent series expansion in (12) and (13) we can 
observe that the reduced model will exhibit the necessary 
properties if we project onto the Krylov space Kn induced 
by general TLM-operator A, M and n: 

K,(A, M,n) = span{M, AM, (A)*&‘, , (A)“-‘M} 
(14) 

In order to orthogonalize the Krylov subspace and de 
termine the projection matrix W,, the basic Arnoldi- 
algorithm has been applied. The block Arnoldi algorithm 
reduce the general TLM-operator to a n x II block upper 
Hessenberg matrix A,. 
Using the block non-symmetric Lanczos algorithm the op- 
erator A can be reduced to a n x n block tridiagonal form 
T, such that: 

V,‘AW, = D,T, , (15) 

where the two matrices V and W are generated to be 
orthogonal, VTW, = D,. The corresponding multiport 
impulse response is: 

fin2 = QW,(zI - TJ’D-‘V;R = 

= Fz-kQ~n(~,)k-lDmlV,TR (16) 
k=l 

For a more detailed description of the relevant mathematics 
refer to [5]. 
An important characteristic of the depicted technique is 
that the operator A need not be known explicitly, as only 
its impact on the sequence of Krylov vectors must be taken 
into account. Subsequently the computation of the re- 
duced model can be integrated in the usual iterative TLM- 
algorithm in a very efficient manner. Indeed the choice 
of a useful iterative eigenvalue solver is determined by the 
properties of the matrix A. Due to its missing symmetric 
property, the general non-symmetric Lanczos or Arnoldi al- 
gorithm will have to be employed. Compared with a sym- 
metric Lanczos algorithm this is disadvantageous in terms 
of both numerical efficiency and stability. On the other 

hand the unitarity of A represents an a priori knowledge 
of the possible eigenvalue distribution and can thus be used 
to identify spurious eigenvalues., 

IV. SIMULATIoN RESULTS 

We consider a rectangular air-filled cubic lcm resonator 
with ideally conductipg walls. Excitation node and obser- 
vation point are placed at opposite edges of the resonator 
according to Fig. 2. 

1.5 
Irn 

The structure is investigated for different discretizations of 
3, 5 or 10 cells in each direction - corresponding to state 

1127 



space dimensions of 324, 1500 and 12000, respectively. The 

eigenfrequencies of the original system are determined by 
Fourier transformation of the TLM time domain respbn~e 
of a Dlrac excitation. For the 5.cell discretization case, 
at 70 Arnoldi or Lanszos algorithm steps the all calculated 
emgenvalues X, of A operators are placed on the unit circle 
(Fig. 3a). For a smaller number of steps the Arnoldi algo- 
rithm approximate the eigenvalue spectrum of the general 
TLM operators more exactly (Fig. 3a,b), due ti its quicker 
convergence. 
Converged eigenvalues can almost certainly be recognized 
by their position close to the unit circle in the complex 
plane. For these eigenvalues the corresponding eigenfre- 
quencies fz are calculated according to equation (9). 
From Fig. 4a a close relationship between the simulated 
eigenfrequencies and the theoretical resonances can be ob- 
served even for a rough discretization of 3 x 3 x 3 cells. 
For a good agreement between the reduced model and the 
original TLM it is sufficient to perform 20 steps using both 
algorithms. 
Fig. 4a and Fig. 4b show that in the case of discretiza- 
tions of 3 and 5 cells all eigenfrequencies related to physical 
modes of the resonator are identified at 20 and 70 Arnoldi 
steps, respectively. 
We determine the number of Amoldi/Lanczos steps re- 
quired to find all the relevant eigenfrequencies. It turns 
out that the ratio of necessary steps and state space di- 
mension decreases significantly with increasing complexity 
of the structure. In all cases the reduction of the operator 
operator A by a factor of at least 250 is achieved. 
The implementation of the Lanczos algorithm is more effi- 
cient, since the computational time increases with the num- 
ber of steps n in contrast to n2 by Amoldi. 

V. CONCLUSION 

We considered the application of complexity reduction to 
the TLM method. It was shown that the non-symmetric 
property of the matrix rS requires the use of a genera1 
non-symmetric eigenvalue solver. The basic Arnoldi and 
the non-symmetric Lanczos methods based approach were 
successfully applied to a TLM model of a rectangular cubic 
resonator. We observed a rapid converge&e of the relevant 
eigenvalues and a convergence of both Arnoldi and Lanczos 
algorithms for simulation mesh sizes up to 12000 cells. A 
significant reduction on the genera1 TLM operators allow 
to generate a compact model of a electromagnetic system. 
On the other hand, the numerical effort for the Arnoldi al- 
gorithm seems to present a serious drawback for the appli- 
cation to problems of higher dimensions. As a consequence, 
further investigation and implementation of the more effi- 
cient non-symmetric Lanczos algorithm for structures with 
losses will will be performed. 
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