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Abstract— The finite-difference time-domain (FDTD)
method and the transmission line matrix (TLM) method
allow the formulation of state-equaiion representations of
the discretized electromagnetic field, These representations
usually involve very large numbers of state variables. Re-
duced order modeling {ROM) of the investigated structure
may yield considerable reduction of the computational
effort and can be used to generate compact models of
the electromagnetic system. While complexity reduction
approaches based on moment matching techniques have
been intensively studied in the case of FDTD, they have
not yet been considered for TLM. In this paper we apply
Krylov subspace methods to TLM using the basic Arnoldi
and non-symmetric Lanczos algorithm. It is shown that
the inherent unitarity property of the TLM operator
nevertheless implies an essential difference in comparison
to former implementations for FDTD or circuit analysis.
Simulation results for a rectangular cavity resonator using
both TLM with and without ROM and a study of the
convergence of the eigenvalues are presented here.

Keywords— Transmission Line Matrix (TLM) Method, Re-
duced Order Modeling (ROM).

1. INTRODUCTION

The TLM has proven to be a powerful tool for solv-
ing Maxwell’s equations and has been successfully applied
to the analysis of various complicated planar and three-
dimensional structures [1). Like related space discretizing
methods the TLM solves a system of linear equations with
a very high order. Realistic problems often require a total
discretization effort in the order of one million cells, lead-
ing to an even larger state space dimension and number
of eigenvalues. Since higher spatial resolution in addition
demands a shorter time step to guarantee stability, simula-
tion effort may easily become expensive, if not prohibitive.
A reduced order model is a system of significantly lower
order that approximates the original system and sustains
the relevant eigenvalues. The Krylov subspace methods for
extracting the interesting parts of the eigenvalues spectrum
and generating a reduced order model have been used effec-
tively in FDTD, FEM and circuit analysis [2], [3], [4]. The
TLM differs from conventional finite difference schemes,
e.g. FDTD in the sense that the former is a discrete time
evolution scheme. Thus reciprocity and energy conserva-
tion of the model do not yield symmetry of the discrete time
evolution operator. Consequently the symmetric Lanczos
algorithm cannot be applied and the use of general Arnoldi-
or Lanczos-procedures becomes necessary.
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1I. THE TLM-METHOD

The TLM method has emerged as a powerful method for
computer modeling of electromagnetic field. The TLM-
method is based on the analogy between the discretized
electromagnetic field and a mesh of transmission lines. The
space is discretized by subdivision into rectangular cells
and the tangential components of the electromagnetic field
are sampled at the center of each boundary surface of a
cell. The time evolution of the electromagnetic field is mod-
eled by wave pulses propagating between adjacent cells and
scattered within the cells. The TLM cell is described by
a 12-port in Fig. 1, which represents the symmetrical con-
densed node (SCN) and provides the respective abstract
network model. The field state in TLM is represented com-
prisingly by an enumerable set of real quantities and the
field evolution is governed by linear mapping rules. For
these reasons, a Hilbert space representation of the feld
state and the field evolution is possible [1]. The propa-
gation and the scattering of the wave amplitudes may be
expressed by operator equations. We introduce the Hilbert
space Hy, spanned by the sequence of the grid points with
spatial indices [, m and n. The ket-vectors |I, mn, n)— given
in Dirac notation — represent an orthonormal base of the
space H,,. The incident wave amplitudes a1 to a2 and
the scattered wave amplitudes by to bjo at a single SCN
are elements of the real vector space R12, Finally we con-
struct the state space of the wave amplitudes Hp from the
direct product of H,,, and R'2, The vectors ja} € Hp and
|b) € Hr denoting all incident and scattered wave ampli-
tudes of the TLM mesh can thus be written in the form
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where the vectar 4@y m,n and the vector ybym » Sumimarize
the incident and the scattered wave amplitudes at the SCN
{t,m,n}

T
k@im,n = k (@1, 42,03, . .. 010, 311, alz]g,m,n ’

Ebrman =k [bly ba, b3, . . bio, i1, bl?]fm,n . (2)
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Fig. 1. A three-dimensional SCN.
Out node

lcm SR I

Electric

\ Excitaionnode W2l

Fig. 2. Rectangular resonator,

The left index k denotes the discrete time coordinate with
unit time interval At. Accordingly the simultaneous scat-
tering at all TLM mesh nodes is described by the operator
equation

le+1b) = S|ra) - (3)

The scattering matrix § is given by

0 S ST
S = S()T 0 S[) 1 (4)
S ST oo
where

0 0 o1
o o -1 f

So=|.1 4+ 2 2. (5)
? 3 0 0
2 2 0 0

In order to describe the propagation of the wave amplitudes
in the TLM mesh, we define the spatial shift operators
in positive | — m— and n— direction X, Y, Z and their
Hermitian conjugates X1, ¥ and Z7 on the space H,, by

X|l,mn)=l+1,m,n},
Xtimn)=|I-1,mn),
Y |l,m,ny=|[,m+1,n),
Yi|L,mny=|l,m—1,n),
Zilmny=\,m,n+1),
; ZH,mny =\, mn—~1) .

Makin}g use of the 12 x 12 -matrix {As;),, = 6im djn
and the respective numbering of the ports (see Fig. 1}, the
connection operator I' may be written in the matrix form

I'=X(A12+As) + XAy + Aga) +
+Y (Asg+ Arg) + Y Ags + Agr) +
+Z{Ag10 + A11,12) + ZN(A109 + Ar1z11) - (6)

The complete cycle of the TLM-algorithm can be expressed
as

|12} = T'S |pa) - (7)

In z-domain the state equation of the TLM-system is thus
given as
(8)

It can easily be verified that the scattering matrix S as
well as the connection matrix I' is real, symmetric and
unitary. While only the case for infinite homogenous space
is shown here, these properties are also valid for arbitrary
bounded and lossless structures. The unitarity of § and I
passes over to the general TLM-operator A = I'S whereas
symmetry is lost because the scattering and connection op-
erator do not commute : I'S # (I'S)~!. The eigenvalues
of I'S are located on the unit circle in the complex plain
and related to the corresponding eigenfrequencies f; by

(z2I — T'S)|a} = 0.

N = of St ©)

I1I. REDUCED ORDER MODELING

In the complexity reduction approach we search for a
model of reduced order that approximates the discrete
TILM model which is represented by the state equation (8)
derived in the last section. Assuming a multiport exci-
tation vector |a), and a vector of port responses |a), we
obtain

oy =

la), =

271 (Al3) + Rla),) (10)
Qla), (1)

and the multiport matrix impulse response can thus be
calculated at as

Hy=Q@I-A)'R= iz'kQ (A 'R, (12)
’ k=1

Although the order N of the above equation is very high,
a large number of eigenstates result from the discretization
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are neither controllable nor observable for the given local-
ization of excitation and response. Therefore it is mean-
ingful to generate a reduced order model containing only
those eigenstates that will significantly affect the accuracy
of the solution. This may be done using moment matching
techniques [5]. The basic idea is to project the system of
state equations of dimension N onto a space of significantly
lower dimension n such that only the first n moments in the
Laurent series expansions of the original system (12) and
the reduced system are matched. Using a projection oper-
ator Wy, : R® — RY and its transpose W,I : RY — R"
we obtain the reduced system of order n << N

H, =QW((zI-A,) 'W'R=
=Y QW (A,) T WTR.
k=1

(13)

where W, is such that W7 W, = 1,,.

From the Laurent series expansion in (12} and (13) we can
observe that the reduced model will exhibit the necessary
properties if we project onto the Krylov space Ky, induced
by general TLM-operator A, M and n;

Kn(A, M, n) =span{M,AM,(A’M,..., (A" 'M}.
(14)
In order to orthogonalize the Krylov subspace and de-
termine the projection matrix W,, the basic Arnoldi-
algorithm has been applied. The block Arnoldi algorithm
reduce the general TLM-operator to a n X n block upper
Hessenberg matrix A,,.
Using the block non-syminetric Lanczos algorithm the op-
erator A can he reduced to a n x n block tridiagonal form
T, such that:

V,TAW, = D, T, , (15}
where the two matrices V and W are generated to be
orthogonal, V.Y W, = D,. The corresponding multiport
impulse response is:

H,, =QW,I-T,)'D'VIR =

oC
=Yz kQW(T.)*'D VTR
k=1

(16)

For a more detailed description of the relevant mathematics
refer to [5].

An important characteristic of the depicted technique is
that the operator A need not be known explicitly, as only
its impact on the sequence of Krylov vectors must be taken
into account. Subsequently the computation of the re-
duced model can be integrated in the usual iterative TLM-
algorithm in a very efficient manner. Indeed the choice
of a useful iterative eigenvalue solver is determined by the
properties of the matrix A. Due to its missing symmetric
property, the general non-symmetric Lanczos or Arneldi al-
gorithmn will have to be employed. Compared with a sym-
metric Lanczos algorithm this is disadvantageous in terms
of both numerical efficiency and stability. On the other

hand the unitarity of A represents an & priori knowledge
of the possible eigenvalue distribution and can thus be used
to identify spurious eigenvalues.

V. SIMULATION RESULTS

We consider a rectangular air-filled cubic lcm resonator
with ideally conducting walls. Excitation node and obser-
vation point are placéd at apposite edges of the resonator
according to Fig. 2.
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Fig. 3. Eigenvalues of A operator calculated for 5 cell diskretization
at different algorithm steps.

The structure is investigated for different discretizations of
3, 5 or 10 cells in each direction — corresponding to state
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space dimensions of 324, 1500 and 12000, respectively. The
eigenfrequencies of the original system are determined by
Fourier transformation of the TLM time domain response
of a Dirac excitation. For the 5-cell discretization case,
at 70 Arnoldi or Lanszos algorithm steps the all calculated
eingenvalues A; of A operators are placed on the unit circle
{Fig. 3a). For a smaller number of steps the Arnoldi algo-
rithm approximate the eigenvalue spectrum of the general
TLM operators more exactly (Fig. 3a,b), due ti its quicker
convergence,

Converged eigenvalues can almost certainly be recognized
by their position close to the unit circle in the complex
plane. For these eigenvalues the corresponding eigenfre-
quencies f; are calculated according to equation (9).

From Fig. 4a a close relationship between the simulated
eigenfrequencies and the theoretical resonances can be ob-
served even for a rough discretization of 3 x 3 x 3 cells.
For a good agreement between the reduced model and the
original TLM it is sufficient to perform 20 steps using both
algorithms.

Fig. 4a and Fig. 4b show that in the case of discretiza- -

tions of 3 and 5 cells all eigenfrequencies related to physical
modes of the resonator are identified at 20 and 70 Arnoldi
steps, respectively.

We determine the number of Arnoldi/Lanczos steps re-
quired to find all the relevant eigenfrequencies. It turns
out that the ratio of necessary steps and state space di-
mension decreases significantly with increasing complexity
of the structure. In all cases the reduction of the operator
operator A by a factor of at least 250 is achieved.

The implementation of the Lanczos algorithm is more effi-
cient, since the computational time increases with the num-
ber of steps n in contrast to n? by Arnoldi.

V. CONCLUSION

We considered the application of complexity reduction to
the TLM method. It was shown that the non-symmetric
property of the matrix I'S requires the use of a general
non-symmetric eigenvalue solver. The basic Arnoldi and
the non-symmetric Lanczos methods based approach were
successfully applied to a TLM model of a rectangular cubic
resonator. We observed a rapid convergence of the relevant
eigenvalues and a convergence of both Arnoldi and Lanczos
algorithms for simulation mesh sizes up to 12000 cells. A
significant reduction on the general TLM operators allow
to generate a compact model of a electromagnetic system.
On the other hand, the numerical effort for the Arnoldi al-
gorithm seems to present a serious drawback for the appli-
cation to problems of higher dimensions. As a consequence,
further investigation and implementation of the more effi-
cient non-symmetric Lanczos algorithm for structures with
losses will will be performed.
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Fig. 4. Spectrum of the cavity resonator calculated by TLM with
and without ROM. The analytic eigenfrequencies are denoted by
the mode.
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